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Abstract: The COVID-19 pandemic is driving the search for new antiviral techniques. Bacteria
and fungi are known to be inactivated not only by ultraviolet radiation but also by visible light.
Several studies have recently appeared on this subject, in which viruses were mainly irradiated
in media. However, it is an open question to what extent the applied media, and especially their
riboflavin concentration, can influence the results. A literature search identified appropriate virus
photoinactivation publications and, where possible, viral light susceptibility was quantitatively
determined in terms of average log-reduction doses. Sensitivities of enveloped viruses were plotted
against assumed riboflavin concentrations. Viruses appear to be sensitive to visible (violet/blue)
light. The median log-reduction doses of all virus experiments performed in liquids is 58 J/cm2. For
the non-enveloped, enveloped and coronaviruses only, they were 222, 29 and 19 J/cm2, respectively.
Data are scarce, but it appears that (among other things) the riboflavin concentration in the medium
has an influence on the log-reduction doses. Experiments with DMEM, with its 0.4 mg/L riboflavin,
have so far produced results with the greatest viral susceptibilities. It should be critically evaluated
whether the currently published virus sensitivities are really only intrinsic properties of the virus, or
whether the medium played a significant role. In future experiments, irradiation should be carried
out in solutions with the lowest possible riboflavin concentration.
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1. Introduction

The so far two-year rampant corona pandemic caused by the SARS-CoV-2 coronavirus,
has not yet been halted despite all political, social, technical and medical measures. In fact,
the latest “omicron” mutation has led to a global peak in new infections [1]. As a result,
new approaches to virus reduction, among other things, must and will continue to be
sought. Conventional disinfection techniques such as chemical disinfection or disinfection
with ultraviolet radiation are very effective [2–6], but are not applicable in many everyday
situations because, for example, ultraviolet radiation damages not only viruses but also
human cells and various materials.

For bacteria and fungi, there have been many studies in recent years concerning the
disinfecting effect of visible light. Blue and violet light are especially able to inactivate
pathogenic bacteria and fungi [7–15] if the applied irradiation doses are high enough.
Endogenous photosensitizers, such as porphyrins or flavins, naturally present in bacteria
and fungi, absorb this visible light and subsequently generate reactive oxygen species such
as 1O2, OH or H2O2. These intracellular reactive oxygen species attack DNA, proteins or
membranes and, if the produced damage becomes too great, the cell dies. Human cells also
contain such photosensitizers, but they have nevertheless proven to be very resistant to
visible light [16–24].

So far, it is assumed that viruses do not contain photosensitizers as bacteria or fungi do.
Nevertheless, it is obvious to ask whether visible light might also have an inactivating effect
on SARS-CoV-2 or other viruses. In fact, previous studies on the effect of light on viruses
have actually observed a significant coronavirus reduction with the help of visible light.
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However, much of the experiments to date have been conducted with viruses in cell
culture media, which may themselves contain photosensitizers such as riboflavin, that
generate reactive oxygen species under illumination as reported by Grzelak et al. [25].
Riboflavin is of particular importance in this respect, as it’s known strong antiviral effect is
used in the disinfection of blood products. This is mostly undertaken in combination with
UVB or UVA irradiation [26–31]—also against SARS-CoV-2 [32]—but virus inactivation
with riboflavin also works with visible light [33].

Therefore, it cannot be excluded that media components influence virus photoinacti-
vation results. Regardless, there are already commercial illumination devices that advertise
white light, with partially increased short-wavelength (violet/blue) components, as safe
measures against coronaviruses under a variety of different conditions in the air and on
surfaces, based on currently published studies performed using viruses in media.

In the study presented here, the hitherto published results on the photoinactivating
effect of visible light on viruses were collected and analyzed as far as possible. In particular,
the question of whether the used media and their riboflavin content exhibit an influence on
virus reduction was addressed.

2. Materials and Methods

The main focus of the present literature review was on inactivation studies of viruses
by visible light. Photodynamic virus inactivation was excluded with the exception of
investigations on viruses in solutions with a similar riboflavin concentration to that used in
standard culture media such as DMEM and containing 0.4 mg riboflavin per milliliter, this
exception was made to better assess any influence of this known photosensitizer.

Searches were performed on Pubmed and Google Scholar for the following terms
in various combinations: virus, phage, bacteriophage, inactivation, photoinactivation,
disinfection, visible light, radiation, irradiation, blue, violet, 405 nm, and riboflavin.

Where studies were found, the literature sources cited therein were searched for
studies that could potentially be included. In addition, we checked whether the studies
found were cited by other virus inactivation publications that also fit thematically and
should therefore be included.

Where possible, attempts were made to quantify viral susceptibility using average
log-reduction doses (irradiation dose for a 90% reduction). Sometimes the appropriate
values were given in the text, otherwise we determined them by analyzing (enlarged)
figures. If data sets were given, then a reduction of about 3 log-level was chosen and the
average log-reduction dose was calculated on this basis.

To judge the potential influence of riboflavin, the riboflavin concentration was esti-
mated in most studies. For distilled water and salt solutions such as phosphate buffered
saline (PBS) the concentration was assumed to be 0.0 mg/L. For (fresh) medium the typ-
ical concentrations, such as 0.4 mg/L for DMEM [34], 0.2 mg/L for RPMI 1640 [35] and
0.1 mg/L for MEM [36] were assumed. These media are often mixed with fetal calf serum
(FCS) in concentrations between 2 and 10% or other components, but as long as it is mostly
medium, the other components are ignored (for consumed medium it is assumed that the
riboflavin is also mostly consumed).

For the calculation of median log-reduction doses and other analyses, only quantitative
results in liquids, with riboflavin concentrations below 1 mg/L, were included. Experiments
with viruses on surfaces or within living cells were assumed to be incomparable to the
result in saline solutions or media and therefore excluded in the analysis.

3. Results

About 30 appropriate studies were found during the literature search. They are
listed in Table 1, divided into results for non-enveloped and enveloped viruses. The
irradiation wavelengths and average log-reduction doses are given, if possible. Some of
the retrieved studies are older than 50 years and were performed with different kinds of
white lamps of unknown emission spectrum or spectrally resolved irradiance. In such
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cases, no quantitative assessment of the (violet/blue) light sensitivity by log-reduction dose
was possible.

Table 1. Retrieved results for photoinactivation experiments with visible (violet/blue) light on
non-enveloped (A) and enveloped viruses (B). Experimental conditions are given with the assumed
riboflavin (RF) concentration and log-reduction dose, if available. If authors published results for a
virus with different media or riboflavin concentrations, these are given one below the other. Results
marked with * have been obtained on surfaces or at riboflavin concentrations above 1 mg/L and are
not included in the further analysis.

(A) Non-Enveloped Viruses Irradiation
Wavelength

Medium during
Irradiation

Assumed Riboflavin
Concentration [mg/L]

90% Reduction Dose
[J/cm2]

PBS + riboflavin 18.8 4 * [37]
lambda phage

(dsDNA) 410 nm
PBS 0 no reduction after 5 J/cm2

[37]

adenovirus
(dsDNA) 420 nm DMEM + FCS 0.4 29 [38]

PBS + riboflavin +
tyrosine, tryptophan,

pyridoxine and folic acid
0.4 82 [39]

nutrient rich medium
(DMEM + FCS +...) 0.4 88 [39]

PBS + riboflavin 0.4 329 [39]

feline calcivirus
(ssRNA) 405 nm

PBS 0.0 719 [39]

nutrient rich medium 0.2 113 [40]phi C31
(dsDNA) 405 nm

PBS 0.0 1021 [40]

viral haemorrhagic septicaemia
virus

(ssRNA)
405 nm L15 + FCS 0.1 114 [41]

encephalomyocarditis virus
(ssRNA)

405 nm +
blue/white

DMEM + FCS + PBS
(ratio unknown) ? 178 [42]

DMEM + riboflavin 1.4 491 * [43]murine norovirus
(ssRNA) 408 (cw laser)

DMEM 0.4 1976 [43]

acetate buffer + riboflavin 0.05 reduction observed [44]tobacco mosaic virus
(ssRNA)

white light
acetate buffer 0 no reduction [44]

blueberry surface +
riboflavin reduction [45]

Tulane virus
(ssRNA) 405 nm

blueberry surface no reduction after
7.6 J/cm2 [45]

foot and mouth disease virus
(ssRNA)

daylight and
artificial light phosphate saline 0 medium reduction [46]

poliovirus type 1
(ssRNA) fluorescent lamp gelatin saline 0 weak reduction [47]

human rhinovirus 1b
(ssRNA) 425 nm DMEM + FCS 0.4 no reduction after

45 J/cm2 [48]

poliovirus type 3
(ssRNA)

white light of
incandescent bulb medium 199 0.01 no reduction [49]

(B) Enveloped Viruses Irradiation
Wavelength

Medium during
Irradiation

Assumed Riboflavin
Concentration [mg/L]

90% Reduction Dose
[J/cm2]

DMEM + FCS 0.4 5 [48]

MEM + FCS 0.1 18.8 [48]

inside vero cells ? 6.4 * [48]
SARS-CoV-2

(ssRNA, coronavirus) 425 nm

inside epithelial cells ? 6.7 * [48]

SARS-CoV-2
(ssRNA, coronavirus)

410 nm +
blue/white

MEM + FCS
(DMEM @ FOI

laboratory?)
0.1 6.5 blue (<490 nm)

12.6 total irradiation [50]
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Table 1. Cont.

(B) Enveloped Viruses Irradiation
Wavelength

Medium during
Irradiation

Assumed Riboflavin
Concentration [mg/L]

90% Reduction Dose
[J/cm2]

SARS-CoV-2
(ssRNA, coronavirus)

405 nm +
blue/white DMEM 0.4 6.6 [51]

SARS-CoV-2
(ssRNA, coronavirus)

405 nm +
blue/white

DMEM + FCS + PBS
(ratio unknown) ? 7.5 (<420 nm) [42]

SARS-CoV-1
(ssRNA, coronavirus) 425 nm DMEM + FCS 0.4 9.9 [48]

DMEM + FCS 0.4 14.1 [52]

metal wet 12 * [52]

metal dry 20.3 * [52]

paper wet 10.8 * [52]

paper dry 13 * [52]

plastic wet 14.4 * [52]

feline infectious peritonitis virus
(ssRNA, coronavirus) 405 nm

plastic dry 31.8 * [52]

MERS-CoV
(ssRNA, coronavirus) 425 nm DMEM + FCS 0.4 18.8 [48]

influenza A virus
(ssRNA)

405 nm +
blue/white

DMEM + FCS + PBS
(ratio unknown) ? 23.5 [42]

respiratory syncytial virus
(ssRNA) 420 nm DMEM + FCS 0.4 29 [38]

SARS-CoV-2
(ssRNA, coronavirus) 420 nm DMEM + FCS 0.4 29 [38]

BCoV
(ssRNA, coronavirus) 401 nm DMEM + FCS 0.4 29 [53]

HCoV-229E
(ssRNA, coronavirus) 405 nm (pulsed) RPMI 1640 0.2 55 [54]

(consumed) RPMI 1640
diluted 1:10 in PBS 0 57.5 [55]BCoV

(ssRNA, coronavirus) 405 nm
steel surface 96 * [55]

zika virus
(ssRNA) 445 nm (cw laser) unknown medium ? 64 [56]

HCoV-229E
(ssRNA, coronavirus) 405 nm RPMI 1640 0.2 89 [54]

herpes simplex virus Type 1
(dsDNA) 445 nm (pulsed) unknown medium 112 [57]

phi 6
(dsRNA) 405 PBS/SMG 0 400 [58]

phi 6
(dsRNA) 455 PBS 0 2130 [59]

gelatin saline + riboflavin 2 very strong reduction [47]semliki forest virus
(ssRNA)

daylight and
fluorescent lamp gelatin saline 0 strong reduction [47]

sindbis virus
(ssRNA)

daylight and
fluorescent lamp gelatin saline 0 strong reduction [47]

Murray Valley encephalitis virus
(ssRNA) fluorescent lamp gelatin saline 0 strong reduction [47]

transmissible gastroenteritis virus
(ssRNA, coronavirus) daylight unknown medium ? strong reduction [60]

influenza B virus
(ssRNA)

daylight and
artificial light phosphate saline 0 strong reduction [46]

vesicular stomatitis virus
(ssRNA)

daylight and
artificial light phosphate saline 0 strong reduction [46]

measles morbillivirus
(ssRNA)

white light of
fluorescent lamp salt solutions 0 strong reduction [61]

herpes simplex virus
(dsDNA, JES strain)

white light of
fluorescent lamp

MEM 0.1 strong reduction [62]

riboflavin solution 0.1 strong reduction [62]

salt solutions 0 reduction [62]

distilled water 0 no reduction [62]
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Table 1. Cont.

(B) Enveloped Viruses Irradiation
Wavelength

Medium during
Irradiation

Assumed Riboflavin
Concentration [mg/L]

90% Reduction Dose
[J/cm2]

MEM 0.1 strong reduction [63]

riboflavin solution 0.1 strong reduction [63]canine distemper virus
(ssRNA)

artificial visible
light

salt solutions 0 reduction [63]

Eagle’s basal medium 0.1 strong reduction [49]measles morbillivirus
(ssRNA)

white light of
incandescent bulb distilled water 0 reduction [49]

murine leukaemia virus
(ssRNA) 420–430 nm OptiMEM 0.1 reduction [64]

rubella virus
(ssRNA)

white light of
incandescent bulb PBS 0 reduction [65]

influenza A virus
(ssRNA) fluorescent lamp gelatin saline 0 reduction [47]

parainfluenza virus type 3
(ssRNA)

white light of
fluorescent lamp salt solutions 0 reduction [61]

inside vero cells ? reduction [66]
SARS-CoV-2

(ssRNA, coronavirus) 450, 454, 470 nm
DMEM + FCS 0.4 no reduction after

20 J/cm2 [66]

Newcastle disease virus
(ssRNA)

daylight and
artificial light phosphate saline 0 weak reduction [46]

vaccinia virus
(dsDNA)

white light of
incandescent bulb Eagle’s basal medium 0.1 weak reduction [49]

vaccinia virus
(dsDNA)

daylight and
artificial light phosphate saline 0 weak reduction [46]

influenza A virus
(ssRNA)

daylight and
artificial light phosphate saline 0 weak reduction [46]

fowl plague virus
(ssRNA)

daylight and
artificial light phosphate saline 0 no reduction [46]

rabbit pox virus
(dsDNA) fluorescent lamp gelatin saline 0 no reduction [47]

The median log-reduction doses of all virus experiments performed in liquids is
58 J/cm2. For the non-enveloped, enveloped and coronaviruses only, they are 222, 29 and
19 J/cm2, respectively (results on surfaces or at riboflavin concentrations above 1 mg/L
were ignored). The differences between these groups is also illustrated in the boxplot in
Figure 1.

A correlation between the assumed riboflavin concentration (or the applied media)
and the sensitivity (inverse of the log-reduction dose) is illustrated in Figure 2A,B for all
non-enveloped and enveloped virus data, respectively. The results for both groups, with
those of enveloped viruses including those for all coronaviruses, show that sensitivity
increases with higher riboflavin concentration. However, this tendency appears to be less
pronounced for non-enveloped viruses.
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Figure 2. (A) Visible light sensitivity (inverse of the log-reduction dose) for viruses in different
assumed riboflavin concentrations (media) for the non-enveloped viruses. (B) Visible light sensitivity
for viruses in different assumed riboflavin concentrations (media) for enveloped viruses including
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dependence between riboflavin concentration (medium) and observed virus sensitivity.

4. Discussion

The overall impression from Table 1 and Figure 1 is that, although there are large
differences between the various viruses and experimental conditions, viruses can be inacti-
vated by visible violet or blue light. Enveloped viruses such as coronaviruses appear to be
particularly sensitive and non-enveloped less sensitive.

The median log-reduction doses are roughly in the same order of magnitude as
previously observed for bacteria and fungi [14,15], although it is as yet unclear whether the
mechanisms or photosensitizers are comparable.

However, there is a major difference in how the virus experiments are conducted.
Irradiations of bacterial and fungal solutions occur predominantly in media such as PBS,
which do not contain photosensitizers. In particular, irradiation experiments with animal
or human viruses usually take place in cell culture media with additives such as FCS or
even phenol red. The latter may lead to a lower irradiance than expected due to optical
absorption in the violet/blue spectral region and should always be considered as Tomb et al.
and Biasin et al. [39,51] did.

Another aspect may be even more critical. Many of the recent (corona-) virus investi-
gations consider the observed photoinactivation to be an intrinsic property of the viruses
studied. However, the applied media contain at least one photosensitizer, riboflavin, which
can make an appreciable contribution to inactivation. Most of the new coronavirus studies
do not discuss this possibility. Rathnasinghe et al. have mentioned a comparative study
with a riboflavin solution but published no results [42].

Riboflavin is known to act as a photosensitizer in combination with short wave-
length visible light or with UV radiation. In photoinactivation experiments performed
50 years ago, it has already been found that the medium has an effect on virus reduc-
tion and that riboflavin concentrations, as found in common culture media, enhanced
virus reduction [44,47,49,62,63]. This has been reconfirmed in more recent studies by



Photonics 2022, 9, 113 8 of 11

Tomb et al. [39,40] and Kingsley [43,45] and also fits the results of Grezlak et al. [25] accord-
ing to which irradiated media generate reactive oxygen species, for which riboflavin is
mainly responsible.

This influence of riboflavin in the medium also does not seem to contradict the data
presented here. Two of the three lowest log-reduction doses for violet/blue light in Table 1
are from coronavirus experiments with white LED light and with an appreciable blue
irradiance around 450 nm, the riboflavin absorption maximum.

The riboflavin concentrations in Figure 2 are only very roughly estimated and the data
are sparse and scattered, but it already appears that irradiation experiments performed in
DMEM with 0.4 mg/L riboflavin in the starting medium lead to higher photoinactivation
sensitivities or smaller log-reduction doses compared with experiments in other media.

This is strongly supported by the fact that, in all results in Table 1 for a single virus but
different riboflavin concentrations originating from a single paper, cell culture media, or
riboflavin concentrations similar to cell culture media, led to lower log-reduction doses or
higher photoinactiavation sensitivities than saline solutions with no or less riboflavin. This
can be recognized very well in the mammalian virus experiments of Tomb et al. [39]. In pure
PBS, the log-reduction dose was 719 J/cm2. With 0.4 mg/L riboflavin the dose dropped to
319 J/cm2 and in nutrient rich medium, it was even as low as 88 J/cm2, which is almost a
factor of 10 less than in the riboflavin-free solution. Also, in studies on a phage, Tomb et al.
found approximately a factor of 10 in the log-reduction dose in solutions without riboflavin
(1021 J/cm2) and in nutrient medium (113 J/cm2) [40]. This observation of the influence
of the medium or the riboflavin concentration on the virus inactivation is quantitatively
and qualitatively confirmed by several other authors [37,43,45,48,49,62,63]. In contrast,
there is not one report with a higher log-reduction at lower riboflavin concentrations, when
different concentrations or media were employed.

The question of the cause of the viral photosensitivity and the underlying mechanism
of action remains unresolved. If exogenous photosensitizers in the medium, such as
riboflavin, are responsible for the virus inactivation then it is a kind of photodynamic
therapy (PDT), in which virus nucleotides, proteins, or the virus envelope are destroyed by
reactive oxygen species [67,68].

However, in saline solutions such as PBS, no external photosensitizers are expected
and yet many authors have observed photoinactivation of viruses. This effect also still
appears to be oxygen dependent [63,65], which could be indicative of a mechanism based
on endogenous photosensitizers and ROS generation. However, there are no known
endogenous virus photosensitizers and no microbiological reason why viruses might
require such photosensitizers.

Nonetheless, it has already been observed that typical PDT dyes can attach to viral
envelopes [61]. This allows the speculation that viruses might inadvertently carry pho-
tosensitizers from their host cells, which contain mainly porphyrins and flavins. This
would explain the particularly efficient effect of violet or blue light on viruses—especially
enveloped viruses—and for example, the relationship between the antiviral effects of 405
and 455 nm as observed by Vatter et al. [59] for the phage phi6.

5. Conclusions

It appears that riboflavin, and also possibly other media components [25,39,63] may
have a major impact on photoinactivation results. DMEM especially might lead to higher
virus sensitivities and should be used with caution in such experiments. Authors of future
studies should consider this.

As long as it cannot be excluded that the medium has an influence on photoinactivation
of (corona-) viruses, it should be mentioned in publications that virus reduction with visible
light may be quite different under other conditions, such as in air. This is especially
important in the ongoing corona pandemic, where frightened citizens seek protective
measures and companies might offer deceptive security based on misunderstood studies.
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